Instructor Problems:

Q1- If $\vec{a}=-\hat{\imath}+2 \hat{\jmath}$ and $\vec{b}=5 \hat{\imath}+3 \hat{\jmath}$ Find: $|a|,|b|, \vec{a}+\vec{b},|\vec{a}+\vec{b}|, \theta_{a+b}, \vec{a}-\vec{b},|\vec{a}-\vec{b}|, \theta_{a-b}$, $3 \vec{a}+2 \vec{b},|3 \vec{a}+2 \vec{b}|, \theta_{3 a+2 b}$

Q2- If $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $\vec{b}=5 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ Find:
a) The angle between two vectors.
b) A unit vector that in the same direction of \vec{a}.
c) A unit vector that in the same direction of \vec{b}.
d) the scalar and vector projection of \vec{b} along \vec{a}.
e) the scalar and vector projection of \vec{a} along \vec{b}.

Q3- If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}, \vec{b}=\hat{\imath}-2 \hat{\jmath}-2 \hat{k}$ and $\vec{c}=3 \hat{\imath}+2 \hat{\jmath}$, Show that:
a) $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
b) $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
c) $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$

Chapter (3): Linear Equations; Vectors, Matrices, and Determinants

PROBLEMS, SECTION 4

9. Let $A=2 i+3 \mathbf{j}$ and $B=4 i-5 j$. Show graphically, and find algebraically, the vectors $-A$, $3 \mathbf{B}, \mathbf{A}-\mathbf{B}, \mathbf{B}+2 \mathbf{A}, \frac{1}{2}(\mathbf{A}+\mathbf{B})$.
10. If $\mathbf{A}+\mathbf{B}=4 \mathbf{j}-\mathbf{i}$ and $\mathbf{A}-\mathbf{B}=\mathbf{i}+3 \mathbf{j}$, find \mathbf{A} and \mathbf{B} algebraically. Show by a diagram how to find \mathbf{A} and \mathbf{B} geometrically.
12.- Find the angle between the vectors $\mathbf{A}=-2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}-2 \mathbf{j}$.
11. If $\mathbf{A}=4 \mathbf{i}-3 \mathbf{k}$ and $\mathbf{B}=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$, find the scalar projection of \mathbf{A} on \mathbf{B}, the scalar projection of \mathbf{B} on \mathbf{A}, and the cosine of the angle between \mathbf{A} and \mathbf{B}.
12. Let $\mathbf{A}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$. (a) Find a unit vector in the same direction as A. Hint: Divide \mathbf{A} by $|\mathrm{A}|$.
13. Show that $2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ and $5 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ are orthogonal (perpendicular). Find a third vector perpendicular to both.
14. Find a vector perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}-2 \mathbf{k}$.

Chapter (6): Vector Analysis

Section (3) P. (242): 1

PROBLEMS, SECTION 3

1. If $\mathbf{A}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}, \mathbf{B}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathrm{C}=\mathbf{j}+\mathbf{k}$, find $(\mathbf{A} \cdot \mathbf{B}) \mathrm{C}, \mathbf{A}(\mathbf{B} \cdot \mathbf{C}),(\mathbf{A} \times \mathbf{B}) \cdot \mathrm{C}$, $A \cdot(B \times C),(A \times B) \times C, A \times(B \times C)$.
2. In polar coordinates, the position vector of a particle is $\mathbf{r}=r e_{r}$. Using (4.13), find the velocity and acceleration of the particle.

Supporting Materials:

FIGURE 4.3
One straightforward way to do this is to express the unit vectors e_{r} and e_{θ} in terms of i and \mathbf{j}. From Figure 4.3, we see that the x and y components of e_{r} are $\cos \theta$ and $\sin \theta$. Thus we have
(4.11) $\quad e_{r}=i \cos \theta+j \sin \theta$.

Similarly (Problem 7) we find
(4.12) $\quad \mathbf{e}_{\theta}=-\mathrm{i} \sin \theta+\mathrm{j} \cos \theta$.

Differentiating e_{r} and e_{θ} with respect to t, we get

$$
\begin{align*}
\frac{d \mathrm{e}_{r}}{d t} & =-\mathrm{i} \sin \theta \frac{d \theta}{d t}+\mathrm{j} \cos \theta \frac{d \theta}{d t}=\mathrm{e}_{\theta} \frac{d \theta}{d t} \tag{4.13}\\
\frac{d \mathrm{e}_{\theta}}{d t} & =-\mathrm{i} \cos \theta \frac{d \theta}{d t}-\mathrm{j} \sin \theta \frac{d \theta}{d t}=-\mathrm{e}_{\mathrm{r}} \frac{d \theta}{d t}
\end{align*}
$$

PROBLEMS, SECTION 6

1. Find the gradient of $m=x^{2} y^{3} z$ at $(1,2,-1)$.
2. Find the derivative of $x y^{2}+y z$ at $(1,1,2)$ in the direction of the vector $2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
3. Find the gradient of $\phi=z \sin y-x z$ at the point $(2, \pi / 2,-1)$. Starting at this point, in what direction is ϕ decreasing most rapidly? Find the derivative of ϕ in the direction $2 \mathrm{i}+3 \mathrm{j}$.
4. (a) Given $\phi=x^{2}-y^{2} z$, find $\nabla \phi$ at $(1,1,1)$.
(b) Find the directional derivative of ϕ at $(1,1,1)$ in the direction $\mathbf{i}-2 \mathfrak{j}+\mathbf{k}$.
find the following gradients in two ways and show that your answers are equivalent.
5. $\nabla\left(r^{2}\right)$
where $r=\sqrt{x^{2}+y^{2}}$, using (6.7) and also using (6.3). Show that your results are the same by using (4.11) and (4.12).

Supporting Materials:

(6.7) $\quad \nabla \phi=e_{r} \frac{\partial \phi}{\partial r}+e_{\theta} \frac{1}{r} \frac{\partial \phi}{\partial \theta}$.
(6.3) $\nabla \phi=\operatorname{grad} \phi=\mathbf{i} \frac{\partial \phi}{\partial x}+\mathbf{j} \frac{\partial \phi}{\partial y}+\mathbf{k} \frac{\partial \phi}{\partial z}$.

And
(4.11) $\quad e_{r}=i \cos \theta+j \sin \theta$.
(4.12) $\quad e_{\theta}=-i \sin \theta+j \cos \theta$.

PROBLEMS, SECTION 7

Compute the divergence and the curl of each of the following vector fields.

1. $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
2. $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$
3. $\mathbf{V}=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$
4. $\quad \mathbf{V}=x^{2} y \mathbf{i}+y^{2} x \mathbf{j}+x y z \mathbf{k}$
5. $\mathrm{V}=x \sin y \mathbf{i}+\cos y \mathbf{j}+x y \mathbf{k}$

Calculate the Laplacian ∇^{2} of each of the following scalar fields.
9. $x^{3}-3 x y^{2}+y^{3}$
10. $\ln \left(x^{2}+y^{2}\right)$
11. $\sqrt{x^{2}-y^{2}}$
12. $(x+y)^{-1}$

For $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, evaluate
19. $\boldsymbol{\nabla} \cdot\left(\frac{\mathbf{r}}{|\mathbf{r}|}\right)$
20. $\nabla \times\left(\frac{r}{|r|}\right)$
21. $\left(\nabla^{2} r^{3}\right)$

Disclaimer:

All the problems and excerpts above have been borrowed from the book of "Mathematical Methods in the Physical Sciences" $2^{\text {nd }}$ Edition by Mary L. Boas, and it was done only for the purpose of outlining the students' assignments.

